I wanted to repost this article from nanowerk. The purpose is to inform the public how vast the use of this nanotechnology biosensing industry is. Smart dust has been sprayed via aerial spraying (“geoengineering”) for decades on our entire biosphere. This is one way that our bodies get contaminated with the self assembly nanotechnology. As it is used to wirelessly monitor and alter the environment, the same is true for humans.
What is smart dust and how is it used?
Imagine a cloud of sensors, each the size of a grain of sand or even smaller, blown aloft by hurricane winds and relaying data on the storm to weather stations below. Picture an invisible sensor network embedded into a smart city’s roads to monitor traffic, road surface damage and identify available parking spaces – all in real time. Or billions of nanosensors distributed over forests and other areas with fire hazards to detect a fire at its very beginning. Or envision programmable smart dust that triggers an alarm signal when invisible microcracks are detected in a turbine blade.
Smart dust refers to wireless networks of sub-millimeter-scale autonomous computing and sensing platforms not larger than a grain of sand. Smart dust senses and records data about its environment such as light, temperature, sound, presence of toxins or vibrations, and transmits that data wirelessly to larger computer systems.
Smart dust is a vision of the networked future where intelligent networks of trillions of miniscule sensors continuously feel, taste, smell, see, and hear what is going on in their surrounding environment, communicate with each other and exchange information. Smart dust networks are the ultimate Internet-of-Things (IoT) devices.
Smart dust is revolutionary because the sensors are small enough to be put anywhere, even in narrow and difficult areas. Another huge advantage is that these devices work without any human intervention as they are pre-programmed and, notwithstanding their tiny size, have their own power supply.
This technology is expected to not only monitor building controls, pipelines, factory equipment and drug-making processes, but it will also lead to ubiquitous autonomous artificial intelligent computation near the end user, such as authentication, medical procedures and health care monitoring, sensing and tracking, industrial and supply chain monitoring, and defense applications.
Although smart dust devices are not quite in dust-size territory, researchers hope to shrink these devices to the size of a speck of dust via nanotechnology.
To be economically feasible, such single-use devices have to be cheap (we are talking pennies or even fractions of a penny), even cheaper than the radio-frequency identification tags currently used to track the inventory of warehouses, for example.
